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Abstract. Predictive Coding is a popular framework in neurosciences
for explaining cortical function. In this model, higher-level cortical areas
try to predict lower-level neural activity and prediction errors are passed
back to higher layers. Deep Neural Networks (DNN) , which use brain-
inspired architecture, could be augmented with such a model, providing
robustness and a better understanding of spatio-temporal dependencies.
We investigate research in this direction and give a quick review on tasks
in which Predictive Coding (PC) for DNN has demonstrated its interest,
with a strong emphasis on vision-related tasks.
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1 Introduction

Deep Neural Networks (DNN), and more specifically Deep Convolutional Neu-
ral Networks (CNN), demonstrated their large potential on the last decade by
becoming the state-of-the-art models in a lot of high-level Artificial Intelligence
(AI) tasks, including image classification, video prediction, image segmentation
among many more. Their architecture takes inspiration from human vision sys-
tem by using a hierarchical architecture. However, classical approach of DNN
only includes feedforward (bottom-up) connections, whereas there is much evi-
dence that the brain also features lateral [10] and feedback (top-down) [1] con-
nections, which results in recurrent neuronal dynamics.

Predictive Coding (PC) designates the theory on how the brain performs
probabilistic inference. Although several algorithms are called PC [20], we will
most consider the model in which higher-layers tries to predict lower-layer activ-
ity trough feedback connections, whereas feedforward connections carry residuals
errors (errors between predictions and actual lower-layer activity). This defini-
tion comes from the pioneering article of Rao & Ballard [16], which provides a
model that is used in almost every articles discussed here.

⋆ This work was produced for TIR (Travaux d’Initiation à la Recherche) course in M1
Computer Science of UPS during year 2021/2022.
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1.1 Rao & Ballard’s model

The model of Rao & Ballard (see Figure 1) can be written as :

yi = αyi + βWei−1 − γei (1)

where α, β, γ > 0 and

ei = yi − V i+1yi+1 (2)

Where yi is the activity of neurons in layer i, ei is the residual error of layer i,
W i and V i respectively are the weights of feedforward and feedback connections
between layer i and i+ 1, which verify V T = W in this model.
The term βWei−1 represents the feedforward transmission of previous-layer
residual error whereas the term γei can be interpreted as a feedback action
of prediction by the upper layer, and therefore carries prediction errors.

Fig. 1: Rao & Ballard’s Hierarchical model for predictive coding. Picture from
[16].

1.2 Biological motivations

Such a framework could explain several cognitive observations, like alpha oscil-
lations [2] or filling-in at the blind spot [15].

Alpha oscillations are historically the first observed oscillations by Electroen-
cephalography (EEG). The article [2] has shown that a simple 2-level of PC
model explains the emergence of alpha-band rhythms (neural oscillations, 8-12
Hz) in the visual cortex.

As a consequence of the PC dynamics, the authors observed in their models
traveling waves propagating forward or backward depending on the cognitive
state of the system. Remarkably, the same dynamics was observed in experi-
mental EEG data, with oscillatory waves propagating accordingly to the model’s
predictions
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2 Predictive Coding for Machine Learning

PC turns out to be relevant when considering biological plausibility of DNN. This
fact is not only interesting from a neurosciences perspective but also for machine
learning applications. Indeed, it seems that PC could be an important element
in bridging the gap between these two disciplines. Below we briefly introduce two
areas in which ML algorithms can benefit from PC dynamics: training methods
and latent representations.

Training methods The algorithm of error back-propagation is widely used
to update parameters of a network. However, this update rule is considered as
biologically implausible because of the non-locality of these updates. Using a
variant of PC on the computational graph turned out to approximate exactly
back-propagation [17]. In a similar idea, PredProp [13] proposes a PC approach
for bidirectional stochastic optimization. This is interesting as it may provide
a framework to justify current ML algorithm -i.e., back-propagation- from a
biological point of view.

Latent representations From a data representation perspective, Deep Pre-
dictive Coding Networks (PCN) implement a way to contextually alter priors
on the latent representations [4] [7], whereas most of the time fixed priors are
used in ML, such as sparsity, which struggles to adapt to a new context. This
allows models to learn complex general features of the world like spacio-temporal
dependencies [8].

In the following section we will give an overview of tasks in which PC integration
to a DNN architecture appears to be relevant on a machine learning perspective
and will try to gather some important articles for each tasks.

2.1 Visual perception

CNN have reached good performances for tasks related to object recognition,
classification, and segmentation, but they also have disclosed their limits and
lack of robustness. Neurosciences lead us to think that PC can be a way to
improve CNN’s robustness.

Image classification is a classic neural network problem, which can be seen
as a basic capability of picture’s analysis. Most results in using PC for this task
suggest that it provides robustness. For instance, [18] (Santana et al. 2015) has
shown an improvement of performance against input noise.

In [9] (Han et al. 2018), PCN has shown competitive to state-of-the-art perfor-
mance on benchmark datasets (CIFAR-10, CIFAR-100, SVHN and ImageNet),
despite having fewer layers and parameters.
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Fig. 2: Predify’s model for augmenting a CNN. Picture from [5]. The connections
in green are the feedforward connections already existing in the CNN while blue
and red ones are respectively recurrent and feedback connections.

More recently, [5] (Choski et al. 2021) provided an open-source framework,
Predify (see Figure 2), which can easily implement PC in any Pytorch CNN
and shown that augmenting a few popular CNN (VGG16 and EfficientNetB0)
improved their robustness against noise and adversarial attacks.

The paper [23] even proposes a way to increase PCN efficiency by increasing
the recursive cycles of computation and by not letting feedforward and feedback
connections share weights. To understand this performance’s rise, the authors
studied the case of testing images that were well-classified by PCN but not
by CNN. They discovered that PCN and CNN were not computed the same
representation of an image, which yielded a different probability distribution
across different categories at each step.

Illusory contours Observations suggests that perceiving an optical illusion in-
volves feedback connections of the brain. The article [14] showed that a PCN
can perceive basic optical illusions and ”misclassify” a shape because it saw an
illusory contour. More specifically, they showed that the feedback connections
are mostly responsible for the illusion perception whereas the feedforward con-
nections goes against it, trying to ground the perception to the actual input.

Image reconstruction consists of imitating bio-mechanism that allows our
brain to rebuild a picture that we have seen. The issue is to not lose important
information of the image while it is piped from the entry layer to the last layer.
As explained in [6] and [7], PC is here proposed as a theory where the brain
infers causes that generated a sensory stimulus : the inferred causes are related
to the top-down flow and to the reconstruction of the image features at each
level.
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Those papers show that PCN has good results on inferring causes : even with
little datasets (1000 images) with few classes (only two in the previous papers),
PCN captures the important statistical regularities of photos, which means that
it is able to infer representative causes of an image, even for unknown objects.
However, those papers also raise an important issue : the images reconstructed
by PCN are blurry. They propose to use L1 norm instead of MSE in order to
get visually better images, but it stills an open problem. A really recent study
[3] proposes an alternative model to have less blurry results by mixing PC with
Sparse Coding (SC), they called it the Sparse Deep Predictive Coding (SDPC).

We noticed that in all those studies, they do not try to rebuild an image with
several important objects on it, the presented models only shows their results
for real-world images with one important object on the picture.

2.2 Perception in Video

Models An intuitive application of knowing spatio-temporal dependencies of
the world, which is a motivation of PC, is Video Prediction. This task consists in
trying to predict the next frame of a video, given all (or a part of) the previous
ones. An approach of this problem using multi-scale convolution has been treated
in [12].

(a) Predictive Coding Network (PredNet).
Picture from [11]

/

(b) AnoPCN Module. Picture from [24]

Fig. 3: Two models for Predictive Coding in video

Lotter et al. approaches this task using predictive coding [11]. The model
visible in Figure 3a is a succession of layers, and each layer predicts the next
frame before sending the difference to the other layer.

They used an unsupervised learning approach, with unlabelled video data
collected by themselves, which are videos of moving objects, and camera move-
ments. Also, they were inspired by the fact that the human eye does not need
millions of labelled data to learn.

Their model, called PredNet, can be used to predict the future frames of a
video. The model works because it knows the next frame, so it can learn itself by
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calculating the error between the prediction and the actual image. This allows
using temporal dependencies as supervision for training, even though the dataset
is not labelled.

Ye et al. try to upgrade some already existing technologies[24], like anomaly
detection in videos. Their model, calledAnoPCN, takes inspiration from biolog-
ical PC and achieves state-of-the-art performance in three different benchmarks.
The model features a Predictive Coding Module (PCM) and an Error Refine-
ment Module (ERM). The PCM generates frame prediction, and ERM enlarges
the regularity score gaps. This model is distinct from PredNet[11] because it
uses an encoder-decoder approach.

Fig. 4: Next-frame predictions for sequences of rendered faces rotating with two
degrees of freedom. Picture from [11]

Examples and tests The video used to train the PredNet model includes
ten frames of a face rotating with two degrees of freedom and all the faces used
are different. They also chose to evaluate their model with some natural image
sequences. For that, they used car-mounted camera videos, because the camera
and the elements on the video both move. The result is similar to the previous
test.

In Figure 4, there are three examples of the prediction by PredNet:

– The first row represents the actual video (or frame sequences) and the second
row is the generated row by the PredNet model. We can see that the first
image is greyed out in the generated row. It is a uniform representation set
by default because the model can not predict the first frame as there is no
previous one.
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– Then, the model will learn and try calculating the second frame. Improve-
ments can be noted in the second frame, but it’s blurry.

– The last frame seems identical to the original one, thus the model learned
successfully.

Table 1: Evaluation of next-frame predictions on Rotating Faces Dataset. Table
from [11].

Mean Square Error Structural similarity index

PredNet L0 0.0152 0.937
PredNet Lall 0.0157 0.921
CNN-LSTM Enc.-Dec. 0.0180 0.907
Copy Last Frame 0.125 0.631

Finally, the benchmark proved their model successful: as shown in Table 1,
the best model on this dataset is their PredNet L0.

3 Similar Ideas

Feedback connections The fact that the brains features not only feed-forward
(bottom-up) but also lateral (recurrent) and feedback (top-down) connections
is well known and massively supported by neurosciences observations, as we’ve
seen in 1. Therefore, some articles investigated the implementation of these con-
nections in CNN without necessarily adopting a PC perspective. In [19] for in-
stance, feedback connections have shown beneficial for image classification with
heavy occlusions or Gaussian noise, suggesting they play an important role in
robustness.

Another neuro-inspired motivation of implementing feedback connections is
for internal selective attention modelling [21]. Feedback connections allow modi-
fying the weights of the previous convolutional filter, which leads to focusing on
specifics parts of the image.

Auto-encoders The concept of PC described here and some of the architectures
considered (e.g. Predify [5]) are similar to stacked denoising auto-encoders [22].
The convolution and prediction layers of a CNN augmented with PC can be seen
respectively as an encoder and a decoder.

Sparse Coding As stated in 2, predictive coding implies imposing contextual
prior knowledge on the representation of data. Sparse coding is also a biological
inspired constraint on the representation of data (encouraging the proportion
of activated neurons to be small, which is widely observed in cortical activity).
However, sparse coding is a fixed prior that cannot adapt to a context while
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in a predictive coding framework these prior knowledge constraints are created
contextually. Moreover, predictive coding is a much larger framework from a
neurosciences point of view, whereas sparse coding is mainly this constraint.

4 Conclusion

The huge progression of DNN performances over the past years is mostly a
consequence of the large quantity of computer science research in this domain
that is allowed by its important potential in engineering. This led to more liberty
regarding biological plausibility of architectures, which can be both beneficial
to neurosciences -which may find in machine learning architectures interesting
models- and of course to computer science because machine learning models end-
up being more efficient. The exchange between these two disciplines also occurs
on the other way around. The human vision system remains way more efficient
for general perception than computers while only requiring around 20 watts to
work. A better understanding of the brain can probably lead to improvements
in machine learning performances.

This state-of-the-art emphasises this symbiosis between PC (from a biologi-
cal aspect) and DNN (machine learning) by reviewing a significant part of the
studies that have been led in this field. We have started to provide a biological
framework with Rao & Ballard model. Then, we have discussed about the in-
terest of applying PC to machine learning. In this context, we introduced the
main scope of applications that have been studied in research : the perception
in images and videos.

Because PC operates on biological perception, it is not surprising that re-
searches are mainly led in computer vision. However, the improvements of DNN
observed in this state-of-the-art suggests to try extending PCN to others ma-
chine learning tasks that doesn’t necessarily deals with perception and computer
vision.

We have highlighted in this work that Predictive Coding framework is inter-
esting for both neurosciences and computer science. This suggests that further
research on this topic by neurosciences or machine learning scientists can lead
to a mutual profitable work.
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